xraydb
Release 4.5.6

Matthew Newville

2025-January-08

1 Table of Contents

1.1

1.2

1.3

1.4

1.5

1.6

CONTENTS

3
Installation e e 3
1.1.1 Development Version e 3
1120 Testing . . o o o v e e e 3
1.1.3 Citingthiswork e e e e e e e e 4
1.1.4 Copyright, Licensing, and Re-distribution 4
X-ray Periodic Table of the Elements 5
Example Calculations of X-ray properties of materials 6
1.3.1 X-ray attenuation by elements Lo e 6
1.3.2 pcalculations for materials L e 8
1.3.3 X-ray flux calculations for ionization chambers and photodiodes 11
1.3.4 Xeray mirror reflectivitieso oL e 15
1.3.5 Darwin widths of monochromator crystals, 15
Using XrayDB from Python 20
1.4.1 The Python xraydbmodule e 20
1.42 Atomic Properties o e e e e e e e e e e e e 22
1.4.3 Elastic Scattering Factors 0 e e e e 23
1.44 Xoray BEdges o o e e 23
145 XorayEmissionLines Lo o 25
1.4.6 Absorption and Scattering Cross-sections Lo 26
1.47 Chemical and Materials database 29
1.4.8 Xeray properties of materials L. 32
Overview of Atomicand X-ray Data L e 37
1.5.1 Elements o e e e e e e e e e e e e e 37
1.5.2 Physical Units e 37
1.53 XerayEdgeso 37
1.5.4 XerayLines o o e e e e e e e e e e 38
155 CrossSections 38
Using the XrayDB xraydb.sqlite e 38
1.6.1 Overall Database Schema 39
1.6.2 VersionTable e 40
1.63 ElementsTable 41
1.6.4 Xray_LevelsTable e e 41
1.6.5 Xray_Transitions Table 41
1.6.6 Photoabsorption Table e 42
1.6.7 Scattering Table e 42
1.6.8 Coster_Kronig Table e e 42
1.6.9 Waasmaier Table 43
1.6.10 KeskiRahkonen_Krause Table 43
1.6.11 Krause_Oliver Table e 43

1.6.12 Compton Energies Table e
1.6.13 Chantler Table e e e e e
1.7 References e e e e e e

Bibliography
Python Module Index

Index

45

47

49

xraydb, Release 4.5.6

XrayDB provides atomic data, characteristic X-ray energies, and X-ray cross sections for the elements in an SQLite3
database, xraydb.sqlite. This file can be used directly with SQLite [Hipp (2012)] or from the many programming
language that have interfaces to SQLite. A Python module providing an interface to this database is also provided.
Some of the components of the database hold arrays of numbers, which are stored as JSON-encoded strings, and will
need to be decoded from JSON to be used.

The current version of the XrayDB database is 9.2, and the Python module is version 4.5.6, which can be installed with:

[pip install xraydb J

The XrayDB Github Page has data sources, code, development discussions and issues.

Values in XrayDB use the most common SI units for X-ray work: Cross sections are in cm”2/gr, and energies are in
eV. Energy-dependent data for cross-sections are typically most reliable between about 250 eV to about 250,000 eV.
Elements from Z=1 to 92 are supported, with some data are included for elements between Z=93 and Z=98.

Some useful resources using this library include:

XrayDB Web App (SEES) Web Application for calculations with XrayDB
XrayDB Web App (xrayabsorption.org) Web Application for calculations with XrayDB
X-ray Periodic Table of the Elements Printable Poster-sized Periodic Tables

The project began with the data from the compilation of basic atomic properties and X-ray absorption edge energies,
emission energies, and absorption cross sections from [Elam, Ravel, and Sieber (2002)], who assembled data from
a several sources. More data has been added from other sources. Energy widths of core holes for excited electronic
levels from [Keski-Rahkonen and Krause (1974)] and [Krause and Oliver (1979)]. Elastic X-ray scattering data, fo(q)
is taken from [Waasmaier and Kirfel (1995)]. Resonant scattering cross sections f'(E) and f”(E) and absorption cross
sections from [Chantler (2000)] as from the FFAST webpage (but on a finer energy grid, data from [Chantler (2016)])
are also included.

CONTENTS 1

https://github.com/xraypy/XrayDB
https://xraydb.seescience.org/
https://xraydb.xrayabsorption.org/
https://www.nist.gov/pml/data/ffast/index.cfm

xraydb, Release 4.5.6

2 CONTENTS

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Installation

The X-ray database is held in the SQLite3 file xraydb.sqlite. If you are looking for direct use with SQLite, you can
download this from here: xraydb.sqlite.

To install the XrayDB Python module (which includes the sqlite database), use:

[pip install xraydb]

Depending on your system and Python installation, you may need administrative privileges or to use sudo to install to
a system-installed Python environment.

© Note
The Python module supports Python 3.9 and above.

1.1.1 Development Version

To work with the data sources or to add or modify data in the XrayDB, you will want to clone or download the full
source code kit xrayDB on github.com which contains the current database, original source data, python module, and
files for generating the Periodic Table posters. To get the latest development version, use:

[git clone https://github.com/xraypy/XrayDB.git J

1.1.2 Testing

There are a set of tests scripts for the Python interface that can be run with the pytest testing framework. These are
located in the python/tests folder. These tests are automatically run as part of the development process. For any
release or any master branch from the git repository, running pytest should run all of these tests to completion without
errors or failures.

https://github.com/xraypy/XrayDB/blob/master/xraydb.sqlite?raw=true
https://github.com/xraypy/XrayDB/
https://pytest.org/

xraydb, Release 4.5.6

1.1.3 Citing this work

To cite this work, please use https://zenodo.org/badge/latestdoi/20544 1660

1.1.4 Copyright, Licensing, and Re-distribution

The original sources of the data included here are mostly based on published works with the clear intent of providing
data to the general public. Some of the datasets here do not have clear statements of copyright or license, but have been
freely available for many years. The work here is a compilation and reformatting of those datasets.

To the extent possible, and unless otherwise stated, the database files, data sources, and documentation files here are
placed in the public domain, using the Creative Commons 1.0 Universal (CCO 1.0) Public Domain Dedication below.

As an important note, the Python code in the xraydb package is copyrighted and available under the terms of the MIT
License.

Public Domain

The original sources of the data included here are mostly based on published
works with the clear intent of providing data to the general public. Some of
the datasets here do not have clear statements of copyright or license, but
have been freely available for many years. The work here is a compilation and
reformatting of those datasets.

To the extent possible, and unless otherwise stated, the database files, data
sources, and documentation files here are placed in the public domain, using
the Creative Commons 1.0 Universal (CCO® 1.0) Public Domain Dedication below.

In particular, the files named "xraydb.sqlite", "xraydb.schema", and all files
in the following folders and subfolders:

data_sources/

poster/

doc/

are all placed in the "Public Domain" using the CCO 1.0 dedication.

The files in the folder 'python' and 'python/xraydb' are copyrighted
by the lead authors and copyrighted using an MIT License, which allows
for distribution and re-use of the source code with the only
restriction being to not remove the notice of copyright. Each of
these files will have an explicit notice of copyright and license for
use.

For files that do not explicitly carry a notice copyrighted, no claim
of copyright is made and the CCO 1.0 dedication applies.

The Creative Commons 1.0 Universal (CCO® 1.0) Public Domain Dedication
(https://creativecommons.org/publicdomain/zero/1.0/):

The person who associated a work with this deed has dedicated the work to
the public domain by waiving all of his or her rights to the work worldwide
under copyright law, including all related and neighboring rights, to the
extent allowed by law.

(continues on next page)

4 Chapter 1. Table of Contents

https://zenodo.org/badge/latestdoi/205441660

xraydb, Release 4.5.6

(continued from previous page)

You can copy, modify, distribute and perform the work, even for commercial
purposes, all without asking permission. See Other Information below.

In no way are the patent or trademark rights of any person affected by CCO,
nor are the rights that other persons may have in the work or in how the
work is used, such as publicity or privacy rights.

Unless expressly stated otherwise, the person who associated a work with
this deed makes no warranties about the work, and disclaims liability for
all uses of the work, to the fullest extent permitted by applicable law.

When using or citing the work, you should not imply endorsement by the
author or the affirmer.

1.2 X-ray Periodic Table of the Elements

XrayDB has been used to generate X-ray Periodic Tables of the Elements. These are built using latex and the Python
code and Makefile in poster folder.

There is a choice of two sizes, and a choice of an image of one of four prominent scientists associated with the Periodic
Table and X-ray spectroscopies, or with SEES, the group supporting this work.

Table of X-ray Periodic Tables of the Elements The poster comes in two sizes: Large is 127.5x61 cm (about 50x24
inches) and Medium is 91x45.5 cm (about 36x17 inches).

Scientist Large Periodic Table Medium Periodic Table
Charles Barkla Barkla (Large) Barkla (Medium)

Marie Curie Curie (Large) Curie (Medium)

Dmitri Mendeleev Mendeleev (Large) Mendeleev (Medium)
Henry Moseley Moseley (Large) Moseley (Medium)
SEES SEES (Large) SEES (Medium)

These periodic tables will look like this:

s X-ray Absorption and Emission Energies of the Elements RS

but you should definitely download the PDFs linked for high-quality results.

1.2. X-ray Periodic Table of the Elements 5

https://github.com/xraypy/XrayDB/tree/master/poster
https://seescience.org/
https://en.wikipedia.org/wiki/Charles_Glover_Barkla
https://docs.xrayabsorption.org/XrayTable/xray_table_50in_Barkla.pdf
https://docs.xrayabsorption.org/XrayTable/xray_table_36in_Barkla.pdf
https://en.wikipedia.org/wiki/Marie_Curie
https://docs.xrayabsorption.org/XrayTable/xray_table_50in_Curie.pdf
https://docs.xrayabsorption.org/XrayTable/xray_table_36in_Curie.pdf
https://en.wikipedia.org/wiki/Dmitri_Mendeleev
https://docs.xrayabsorption.org/XrayTable/xray_table_50in_Mendeleev.pdf
https://docs.xrayabsorption.org/XrayTable/xray_table_36in_Mendeleev.pdf
https://en.wikipedia.org/wiki/Henry_Moseley
https://docs.xrayabsorption.org/XrayTable/xray_table_50in_Moseley.pdf
https://docs.xrayabsorption.org/XrayTable/xray_table_36in_Moseley.pdf
https://seescience.org/
https://seescience.org/wp-content/uploads/2024/09/SEES_periodic_table_large.pdf
https://seescience.org/wp-content/uploads/2024/09/SEES_periodic_table_medium.pdf

xraydb, Release 4.5.6

1.3 Example Calculations of X-ray properties of materials

A few detailed examples of using the xraydb.sqlite to calculate the X-ray properties of materials are presented here.
These all use the functions in the python xraydb module, which is describe in more detail in the next chapter, Using
XrayDB from Python. The examples will explore some aspects of X-ray physics, but will not give a complete tutorial
on the concepts here. For a good reference on X-ray physics, see [Als-Nielsen and McMorrow (2011)].

Many of these calculations are also available at XrayDB Web App (xrayabsorption.org).

1.3.1 X-ray attenuation by elements

The XrayDB database tabulates values of the X-ray mass attenuation coefficient, 11/ p, for each element. In most of the
X-ray regime used in materials characterization (say, up to 150 keV), the photo-electric effect is the main process that
causes X-ray attenuation. When the photo-electric process is dominant, the values for 1/p depends strongly on Z of
the atom and on X-ray energy E. In addition to these strong dependencies, sharp increases — so-called absorption edges
— with be see at energies of bound core electron levels of atoms. To illustrate these characteristics, the following script
will plot i/ p for selected elements:

#!/usr/bin/env python

XrayDB example script python/examples/mu_elements.py
#

plot X-ray mass attenuation for selected elements

#

import numpy as np

import matplotlib.pyplot as plt

import wxmplot.interactive as wi

from xraydb import mu_elam , atomic_symbol

energy = np.arange(500, 120000, 10) # energy in eV

for elem in ('C', 'Cu', 'Au'):
mu = mu_elam(elem, energy)
plt.plot(energy, mu, label=elem, linewidth=2)

plt.title('X-ray mass attenuation')
plt.xlabel('Energy (eV)')
plt.ylabel(r'$\mu/\rho \rm\, (cm*2/gr)$')
plt.legend()

plt.yscale('log")

plt.xscale('log")

plt.show()

As you can see in Figure from this figure, the attenuation drops very strongly with £ — approximately as £3. y also
depends strongly with Z, though the sharp absorption edges make this more complicated.

You can also observe that at relatively high energies for relatively low-Z elements (such as C above about 20 keV) that the
attenuation levels off. This is because the coherent (Rayleigh) and incoherent (Compton) scattering processes dominate,
so that the photo-electric absorption is no longer the dominant X-ray scattering process. This can be illustrated by
plotting the different components of 11/ p for C, as with the following script:

#!/usr/bin/env python
XrayDB example script python/examples/mu_components_C.py
#

(continues on next page)

6 Chapter 1. Table of Contents

https://xraydb.xrayabsorption.org/

xraydb, Release 4.5.6

X-ray mass attenuation

10* — ¢
- Cu
— Au
103 4
:53 102 4
E
L
AS3
= 101 4
100 .
10_1 _' T T T T T T T T T T T T LA |
103 104 10°

Energy (eV)

Fig. 1: X-ray mass attenuation coefficient for C, Cu, and Au.

(continued from previous page)

plot components of X-ray mass attenuation for C

#

import numpy as np
import matplotlib.pyplot as plt
from xraydb import mu_elam

energy = np.arange(500, 120000, 10) # energy in eV

elem = 'C'
mu_total = mu_elam(elem, energy, kind='total')
mu_photo = mu_elam(elem, energy, kind='photo')
mu_incoh = mu_elam(elem, energy, kind='incoh')
mu_coher = mu_elam(elem, energy, kind='coh')

plt
plt
plt
plt
plt

plt
plt

plt.
.yscale('log")

plt

plt.

.title('X-ray
.plot(energy,
.plot(energy,
.plot(energy,
.plot(energy,

legend ()

show()

mass attenuation for %s' % elem)

mu_total, linewidth=2, label='Total')
mu_photo, linewidth=2, label='Photo-electric')
mu_incoh, linewidth=2, label='Incoherent')
mu_coher, linewidth=2, label='Coherent")

.xlabel ('Energy (eV)')
.ylabel (r'$\mu/\rho \rm\, (cm*2/gr)$')

which will generate the following plot:

1.3. Example Calculations of X-ray properties of materials

_images/mu_elements.png

xraydb, Release 4.5.6

X-ray mass attenuation for C

104 i = Total
| Photo-electric
10° 4 = |ncoherent
- Coherent
102 4
:Si, 107! 4
E
L
9: 100 4
3
10—1 4
10—2 4
10—3 4

0 20000 40000 60000 80000 100000 120000
Energy (eV)

Fig. 2: X-ray scattering and attenuation factors for C.

Note that above 20 keV, the photo-electric absorption and incoherent Compton contributions are about equal, and that
the Compton scattering dominates above 50 keV. As shown above, the photo-electric scattering will be much higher
for heavier elements. The Rayleigh and Compton scattering have a much weaker dependence on Z, so that the photo-
electric process dominates to higher energies. Replacing ‘C’ with ‘Fe’ in the script above will generate the following
plot:

which shows that the Compton scattering reaching about 0.1 to 0.25 cm? /gr for Fe, about the same value as it was for
C, while the photo-electric cross-section dominates past 100 keV.

1.3.2 4 calculations for materials

While one can use the above values for i/p to calculate the attenuation of X-rays by multi-element materials, the
material_mu() function is available to do the more convenient calculation of the X-ray absorption coefficient x4 in
units of 1/cm for a material and energy value and density (which are known for several common materials). This gives
the length for which X-ray intensity is reduced by a factor of e, and so can be used to calculate the fraction of the X-rays
transmitted through a material of known thickness, as exp(—tu) for a material of thickness ¢. As a first example, we
calculate the the fraction of X-ray transmitted through 1 mm of the water as a function of X-ray energy:

#!/usr/bin/env python

XrayDB example script python/examples/mu_water.py

#

calculate the fraction of X-rays transmitted through 1 mm of water
#

import numpy as np

import matplotlib.pyplot as plt

from xraydb import material_mu

(continues on next page)

8 Chapter 1. Table of Contents

_images/mu_components_C.png

xraydb, Release 4.5.6

X-ray mass attenuation for Fe

104_
103_
102 ”

101 .

Hip (cm?/gr)

- Total

Photo-electric
= |ncoherent
- Coherent

10—1_

10—2 .

-

\

0 20000 40000 60000
Energy (eV)

Fig. 3: X-ray scattering and attenuation factors for Fe.

energy = np.linspace(1000, 41000, 201)
mu = material_mu('H20', energy)

mu is returned in 1/cm
trans = np.exp(-0.1 * mu)

plt.plot(energy, trans, label='transmitted')
plt.plot(energy, l-trans, label="attenuated')
plt.title('X-ray absorption by 1 mm of water')
plt.xlabel('Energy (eV)')
plt.ylabel('Transmitted / Attenuated fraction')
plt.legend()

plt.show()

100000

120000

(continued from previous page)

replacing:

[mu = material_mu('H20', energy)

with:

[mu = material mu('CaC03', energy, density=2.71)

would generate the following plot

For many X-ray experiments, selecting the size of a material size so that its thickness is approximately 1 to 2 absorption
length is convenient so that X-ray scattering and emission can be observed strongly, with neither all primary and

1.3. Example Calculations of X-ray properties of materials

_images/mu_components_Fe.png

xraydb, Release 4.5.6

X-ray absorption by 1 mm of water

1.0+

0.8

0.6 1
—— transmitted
attenuated

0.4

0.2

Transmitted [Attenuated fraction

0.0

T T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000 40000
Energy (eV)

Fig. 4: Fraction of X-rays absorbed and transmitted by water

X-ray absorption by 1 mm of calcite

1.0 A —— transmitted

attenuated

0.8

0.6

0.4 1

0.2 1

Transmitted / Attenuated fraction

0.0

0 5000 10000 15000 20000 25000 30000 35000 40000
Energy (eV)

Fig. 5: Fraction of X-rays absorbed and transmitted by calcite

10 Chapter 1. Table of Contents

_images/mu_water.png
_images/mu_calcite.png

xraydb, Release 4.5.6

scattered X-rays being absorbed by the material itself, but also not simply passing through the material without any
interaction. For example, one can simply do:

>>> from xraydb import material_mu

>>> mu_20kev = xraydb.material_mu('CaC03', 20000, density=2.71)

>>> print("CaC03 1/e depth at 20keV = mm" . format (10/mu_20kev))
CaC03 1/e depth at 20keV = 0.648 mm

1.3.3 X-ray flux calculations for ionization chambers and photodiodes

Gas-filled ionization chambers are widely used as X-ray detectors. They are simple to use, inexpensive, and can give
highly linear measures of photon flux over many orders of magnitude. X-rays entering a chamber filled with an inert
gas (typically He, N2, or one of the noble gases, or a mixture of these) will be partially absorbed by the gas, with the
strong energy dependence shown above. By adjusting the composition of the gas, nearly any fraction of the incident
X-ray beam can be absorbed at a particular X-ray energy, making these ideal detectors to sample the intensity of an
X-ray beam incident on a sample, while attenuating only a fraction of the beam.

Some of the X-rays in the gas will be absorbed by the photo-electric effect which will ionize the gas, generating free
electrons and energetic ions. The first ionization event will generate an electron-ion pair with the energy of the X-ray
minus the binding energy of the core electron. The high-energy electron and ion pair will further ionize other gas
molecules. With an electric potential (typically on the order of 1 kV /cm) across the plates of the chamber, a current is
generated that is proportional to the X-ray energy and fluence of the X-rays.

Effective lonization Potentials of gases and semiconductors

The process of converting the X-ray generated current into X-ray fluence involves several steps. The energy from
a single X-ray-generated electron is converted into a number of electron-ion pairs given by the effective ionization
potential of the gas. These values are available from a few sources and range between 20 and 40 eV, given in the Table
of Effective lonization Potentials.

Table of Effective Ionization Potentials. Many of these are taken from [Knoll (2010)], while others appear
to come from International Commission on Radiation Units & Measurement, Report 31, 1979. The names
given are those supported by the functions ionization_potential () and ionchamber_fluxes().

gas/material name(s) potential (eV)

hydrogen, H 36.5
helium, He 41.3
nitrogen, N, N2 34.8
oxygen, O, O2 30.8
neon, Ne 354
argon, Ar 26.4
krypton, Kr 24.4
xenon, Xe 22.1
air 33.8
methane, CH4 27.3
carbondioxide, CO2 33.0
silicon, Si 3.68
germanium, Ge 297

From this table, we can see that the absorption (by photo-electric effect) of 1 X-ray with energy 10 keV will generate
about 300 electron-ion pairs. That is not much current, but if 10% Hz X-rays are absorbed per second, then the current
generated will be around 5 nA. Of course, the length of the gas or more precisely the length of gas under ionizing

1.3. Example Calculations of X-ray properties of materials 11

xraydb, Release 4.5.6

potential will have an impact on how much current is generated. The photo-current generated can be amplified and
converted to a voltage using a current amplifier, and that voltage will then recorded by a number of possible mean: a
voltage-to-frequency generator and a digital counter is a common method for integrated current for a specific amount
of time, but other sampling methods can also be used.

An ion chamber can be linear over many orders of magnitude of X-ray flux, provided the potential between the plates
is high enough - typically in the 1 kV/cm range to efficiently collect all the charged particles before the recombine. As
an important practical note, a typical current amplifier at a particular setting of sensitivity will be linear only over a
limited range (often over an output voltage of 0.02 to 5 V). Because of this, the sensitivity of the current amplifier used
with an ion chamber needs careful attention to avoid saturation and maintain sensitivity.

A photo-diode works in much the same way as an ionization chamber. X-rays incident on the diode (typically Si or
Ge) will be absorbed and generate a photo-current that can be collected. Typically PIN diodes are used, and a small
reverse bias voltage is often applied. Because the electrons do not need to escape the material but generate a current
transported in the semiconductor, the effective ionization potential is much lower - a few times the semiconductor band
gap instead of a few time the lowest core-level ionization potential. The current generated per X-ray will therefore be
larger than for an ion chamber, and will also generally have a much faster response time. The generated current will still
measured in the same manner as a gas-filled ionization typically using a current amplifier and integrating counter. Of
course, the thickness of the diode is difficult to adjust. The active length of diodes are typically a few hundred microns,
and so are generally much more absorbing than an ion chamber.

Compton scattering and lon Chamber Current

In addition to photo-electric absorption, X-rays can be attenuated by gas molecules in an ion chamber by incoherent
(Compton) or coherent (Rayleigh) scattering processes. The coherent scattering will not generate any electrons in the
gas, but will elastically scatter X-rays out of the main beam. On the other hand, incoherent scattering will generate
some current, though typically only a small portion of the incident X-ray energy is given to a scattered electron. In fact,
Compton scattering has a distribution of energies given to the scattered electron depending on the angle of scattering,
so that the energy of the scattered electron is

E.=E,—E,/[1+ E,/(m.c*)(1 — cos0)]

where £, is the incident X-ray energy, and 6 is the scattering angle. From this, it easy to estimate the median energy
of electrons generated by Compton scattering X-rays of energy F at 90 degrees will be

Emedian = E'y/(l + mec2/E’Y)

(recall that 1 — 1/(1 + z) = 1/(1 + 1/x)). For X-rays of 10 keV, Eyedian is about 192 eV. For 20 keV X-rays, it
will be 750 eV, and for 50 keV X-rays, it will be 4.5 keV. Because of the angular distribution of Compton scattering is
not uniform, these median values over-estimate the amount of energy transferred to the scattered electron by a small
amount that increases with energy. The mean energy of the Compton-scattered electron can be found by integrating
the Klein-Nishina distribution. Since these values depend only on the incident X-ray energy, these calculations have
been done and the values tabulated in the Compton_energies table in the XrayDB sqlite database.

Although the energy transferred to the electron by Compton scattering is much less than by the photo-electric process
the contribution can be important. This is especially true for low-Z gas molecules such as He and N2 at relatively
high energies (10 keV and above) for which incoherent scattering becomes much more important than photo-electric
absorption, as shown above for C. That is, for accurate estimates of fluxes from ion chamber currents at energies about
20 keV or so, the contribution from Compton scattering should be included. For photo-diodes (typically made of Si),
the Compton scattering cross-section exceeds the photo-electric cross-section about 56 keV, and so should also be
included for high-energy X-ray measurements.

12 Chapter 1. Table of Contents

xraydb, Release 4.5.6

lon Chamber Flux calculations

The conversion of incident flux at a particular energy to generated current is not too difficult if considering only the
photo-electric effect of a single gas, but can be somewhat subtle in the more general case. For the discussion here, we
assume that the potential across the plates of the ion chamber is high enough to prevent any recombination of charged
particles.

For a given gas at an incident X-ray energy I, we calculate the total, photo-electric, incoherent (Compton), and coherent
(Rayleigh) values of y. If more than one gas is used, the weighted sum is calculated, so that we have fiiotal, Mphotos
Mincohs and ficon for the gas in the chamber or diode material.

The flux transmitted out of the chamber is
Tirons =]Oe—tmoml

where ¢t is the length of the chamber and I is the incident flux. These two intensities are the quantity we are most
interested in. The attenuated flux (in number per second, or Hz) is

Iatten - IO(]- - e_tutoml)

can be separated into the various source of attenuation as

Iphoto — datten ,Ufphoto/ﬂltotal
Iincoh = latten ,Uincoh/,utotal
Icoh — latten ,ucoh/utotal

The photo-electric effect converts all of the X-ray energy into a current of both electrons and ions using the effective
ionization potential above:

Cthoto = 2QeEIphoto/V:3ﬁ"

where ¢ is the electron charge (1.6 x 10~1°C), E is the incident X-ray energy (in eV), Iphoto is the flux (in Hz), and
Vegr is the effective ionization potential for the gas. The leading 2 comes because both electrons and ions are typically
counted for the current from an ion chamber. It is sometimes useful to add a Frisch mesh grid to collect the slower ions
and shunt them so as to not count that portion of the current, and thereby give the ion chamber a faster time response.
In that case, the current will be half of the value given above.

As discussed above, the coherent (Rayleigh) scattering produces no electrons, but the incoherent (Compton) scattering
does, and the energy of the the Compton-scattered electron varies with both X-ray energy and scattering angle, as does
the probability of scattering. Integrating over all angles (and assuming the ion chamber is large enough to stop the
scattered electrons) gives the mean electron energy, which we use to obtain the current from the incoherent scattering:

C1incoh = 2qumeanIinCoh/Vveff

where Elycan is the mean energy of Compton-scattered electron (approximately, but slightly less than the E cqian value
above.

The current from an ion_chamber is typically measured as a voltage generated by a current-to-voltage amplifier. The
measured voltage will have a gain or sensitivity in units of A/V. The goal is typically to calculate the flux Iy from the
measured voltage and knowledge of the sensitivity as well as the gas(es), ion chamber length ¢, and X-ray energy E.
The measured voltage is given by

V= IO(CphotO + Cincoh)/S

where S is the amplifier sensitivity in A/V. From this, Iy and I;;.,s can be calculated.

1.3. Example Calculations of X-ray properties of materials 13

xraydb, Release 4.5.6

ionchamber_fluxes()
The function ionchamber_fluxes () will calculate X-ray fluxes for an ion chamber as described above the following
inputs:

e gas: the gas, or mixture of gases used or ‘Si’ or ‘Ge’ for diodes.

e length: the length of the ion chamber, in cm.

* energy: the X-ray energy, in eV.

* volts: the output voltage of the current amplifier

* sensitivity and sensitivity_units: the sensitivity or gain of the amplifier used to convert the photo-current to the
recorded voltage.

* with_compton: whether to include the current generated by Compton-scattered electrons [True]
* both_carriers: whether to include the current generated by both positive and negative charged particles [True]

LIS I

The default sensitivity_units is ‘A/V’ but can be set to any of the common SI prefixes such as ‘p’, ‘pico’, ‘n’, ‘nano’, u,
(unicode ‘03bc’), ‘v’, ‘micro’, ‘m’, or ‘milli’, so that:

>>> fluxes = ionchamber_fluxes('N2', volts=1, energy=10000, length=10,
sensitivity=1.e-9)

>>> fluxes = ionchamber_fluxes('N2', volts=1, energy=10000, length=10,
sensitivity=1, sensitivity_units='nA/V")

will give the same results.
The output from ionchamber_fluxes() is a named tuple with 4 fields:
* photo - the flux absorbed by the photo-electric effect, in Hz.
* incoherent - the flux scattered by the Compton effects, in Hz.
e incident - the flux incident on the ion chamber, in Hz.
* transmitted - the flux beam leaving the ion chamber, in Hz.

As described above, the current in the ion chamber or photo-diode is generated by electrons and ions produced by both
the photo-electric and incoherent or Compton scattering. The photo-electric cross-section will dominate for heavy
elements and relatively low X-ray energies, but does not necessarily dominate at high X-ray energies. The photo-electric
cross-section with the incident X-ray energy and the incoherent cross-section with the *mean* Compton-scattering
energy, using the calculated and tabulated mean energies of the Compton-scattered electrons are used to estimate the
incident flux from the photo-current. The total attenuation cross-section, including the coherent cross-sections, is used
to calculate the transmitted flu from the incident flux.

As an example calculation of ion chamber currents:

>>> fl = ionchamber_fluxes(gas='nitrogen', volts=1.25, energy=18000,

length=10.0, sensitivity=1.e-6)
>>> print(f"Incident= {fl.incident:g} Hz, Transmitted flux= {fl.transmitted:g} Hz")
Incident= 2.2358e+12 Hz, Transmitted flux= 2.214e+12 Hz

It is not uncommon for an ion chamber to be filled with a mixture of 2 or more gases so as to better control the fraction
of X-rays absorbed in a chamber of fixed length. This can be specified by passing in a dictionary of gas name and
fractional density, as with:

>>> fl = ionchamber_fluxes(gas={'Kr':0.5, "Ar': 0.5}, volts=1.25,
energy=18000, length=10,

(continues on next page)

14 Chapter 1. Table of Contents

xraydb, Release 4.5.6

(continued from previous page)
sensitivity=1, sensitivity_units='microA/V')
>>> print(f"Incident= {fl.incident:g} Hz, Transmitted flux= {fl.transmitted:g} Hz")
Incident= 1.43737e+10 Hz, Transmitted flux= 3.28986e+09 Hz

Finally, the pressure of the gas is sometimes adjusted to alter the fraction of the beam absorbed. The calculations here
all use the densities at STP, but changes in gas density will be exactly linear to changing the length of the ion chamber.

1.3.4 X-ray mirror reflectivities

At very shallow angles of incidence X-rays can be reflected by total external reflection from a material. The reflectivity
can be very high at relatively low energies and shallow angles, but drops off dramatically with increasing energy,
increasing angle, and decreasing electron density. Still, this reflectivity is one of the few ways to steer X-ray beams and
so is widely used in synchrotron radiation sources.

The reflectivity can be calculated with the mirror_reflectivity() function which takes X-ray energy, incident
angle, and mirror material as arguments.

An example script, comparing the energy-dependence of the reflectivity for a few common mirror materials is given as

import numpy as np
from xraydb import mirror_reflectivity
import matplotlib.pyplot as plt

energy = np.linspace(1000, 51000, 501)

r_si = mirror_reflectivity('Si', 0.002, energy)
r_ni = mirror_reflectivity('Ni', 0.002, energy)
r_rh = mirror_reflectivity('Rh', 0.002, energy)
r_pt = mirror_reflectivity('Pt', 0.002, energy)

plt.plot(energy, r_si, label='Si'")
plt.plot(energy, r_ni, label='Ni')
plt.plot(energy, r_rh, label='Rh')
plt.plot(energy, r_pt, label="Pt')

plt.title('X-ray reflectivity at $\\theta=2 \mathrm $")
plt.xlabel('Energy (eV)"')

plt.ylabel('Reflectivity"')

plt.legend()

plt.show()

1.3.5 Darwin widths of monochromator crystals

Bragg’s law describes X-ray diffraction from crystals as
mA = 2dsin(6)

where) is the X-ray wavelength, d the d-spacing of the crystal lattice plane, # the incident angle, and m the order
of the reflection. For imperfect crystals, in which the lattice planes are not stacked perfectly over extended distances,
the angular width of any particular reflection is dominated by the spread in d-spacing and the mosaicity inherent in
the crystal. For perfect crystals, however, the angular width of a reflection is dominated by the fact that effectively
all of the X-rays will scatter from the lattice well before any attenuation of the X-ray beam occurs. This dynamical

1.3. Example Calculations of X-ray properties of materials 15

xraydb, Release 4.5.6

X-ray reflectivity at 8 = 2mrad

1.0 A —_ 5
~)
E g =) NI
—— Rh
0.8 - — Pt
=, 0.6
=
2
=
[®)
O
[
& 0.4 -
0.2 -
0.0 -
T T T T T T
0 10000 20000 30000 40000 50000

Energy (eV)

Fig. 6: X-ray mirror reflectivity at § = 2mrad for selected mirror surfaces and coatings used for mirrors.

diffraction gives a small but finite offset from the Bragg angle, and gives a broadened angular width to reflection. This
is usually called the Darwin width (named for Charles G. Darwin, grandson of the more famous Charles R. Darwin).
In addition, the refraction and in particular the absorption effects that give anomalous scattering (as calculated with
xray_delta_beta()) make the “rocking curve” of reflected intensity as a function of angle an asymmetric shape.

All of these effects are included in the darwin_width() function, which follows very closely the description from
chapter 6.4 in [Als-Nielsen and McMorrow (2011)]. The function takes inputs of

* energy: the X-ray energy, in eV.

e crystal: the atomic symbol for the crystal: ‘Si’, ‘Ge’, or ‘C’. [‘Si’]

* hkl: a tuple with (h, k, 1) of the reflection used. [(1, 1, 1)]

* a: lattice constant [None - use nominal value for crystal]

* polarization: s, p, or u to specify the X-ray polarization relative to the crystal [s]
e m: the order of the reflection. [1]

* ignore_f1: whether to ignore f1. [False]

* ignore_f2: whether to ignore f2. [False]

Polarization of s should be used for vertically deflecting monochromators at most synchrotron sources (which will
normally be horizontally polarized), and p should be used for horizontally deflecting monochromators. For crystals
used to analyzed unpolarized X-ray emission, use u, which will give the average of s and p polarization.

As with ionchamber_fluxes (), the output here is complicated enough that it is put into a named DarwinWidth tuple
that will contain the following fields:

* theta - the nominal Bragg angle, in rad

e theta_offset - the offset from the nominal Bragg angle, in rad.

16 Chapter 1. Table of Contents

_images/mirrors.png

xraydb, Release 4.5.6

* theta_width - estimated angular Darwin width, in rad

* theta_fwhm - estimated FWHM of the angular reflectivity curve, in rad
* rocking_theta_fwhm - estimated FWHM of a rocking curve, in rad
* energy_width - estimated energy Darwin width, in eV

* energy_fwhm - estimated FWHM energy reflectivity curve, in eV

* rocking_energy_fwhm - estimated FWHM of a rocking curve, in eV
* zeta - nd-array of { = AM/\.

* dtheta - nd-array of angles around from Bragg angle, in rad

* denergy - nd-array of energies around from Bragg energy, in eV

* intensity - nd-array of reflected intensity at zeta values.

* rocking_curve - nd-array of rocking curve of 2 crystals

Here, dtheta will be given by A6 = (tan(6), and denergy will be given by AE = (E. Note that the rocking_ quantities
are estimated as the convolution of the intensity with itself, to simulate an angular scan of one crystal with respect to
the other, as is often done with double-crystal monochromators. rocking_theta_fwhm and rocking_energy_fwhm will
be the FWHM of this curve in angle and energy, and will typically be ~1.5x the Darwin widths in theta_width and
energy_width, respectively.

All of the nd-arrays will be the same size, so that plots of reflectivity can be readily made. An example usage, printing
the predicted energy and angular widths is

import numpy as np
from xraydb import darwin_width
import matplotlib.pyplot as plt

dw_silll = darwin_width(10000, 'Si', (1, 1, 1))
dw_si333 = darwin_width(30000, 'Si', (3, 3, 3))

fmt_string = "Darwin Width for at keV: microrad, ev"
print(fmt_string. format('Si(111)"', 10,

dw_silll.theta_width*1e6,

dw_silll.energy_width))

print (fmt_string.format('Si(333)", 30,
dw_si333.theta_width*1e6,
dw_si333.energy_width))

dtheta dw_silll.dtheta*1e6
denergy = dw_silll.denergy[::-1]

slightly advanced matplotlib hackery:
fig, ax = plt.subplots(constrained_layout=True)

ax.plot(dtheta, dw_silll.intensity, label='I, Si(111)', linewidth=2)
ax.plot(dtheta, dw_silll.intensity**2, label='$I122$, Si(111)', linewidth=2)
ax.plot(dw_si333.dtheta*le6, dw_si333.intensity**2, label="$I22$% Si(333) 30 keV',.
—linewidth=2)

(continues on next page)

1.3. Example Calculations of X-ray properties of materials 17

xraydb, Release 4.5.6

(continued from previous page)

ax.set_title('X-ray diffraction intensity at 10keV')
ax.set_xlabel('Angle - $\\theta_B$ ($ \mu \mathrm $HY
ax.set_ylabel ('Reflectivity"')

ax.legend()

plt.show()

which will print out values of:

Darwin Width for Si(111) at 10 keV: 26.96 microrad, 1.34 eV
Darwin Width for Si(333) at 30 keV: 1.81 microrad, 0.27 eV

and generates a plot of

X-ray diffraction intensity at 10keV

1.0 ,‘ — 1,5i(111)
12, Si(111)
—— [25i(333) 30 keV
0.8 -
5061
=
Is]
@
& 0.4
0.2
__//
0.0 ==———= Jk
-40 -20 0 20 40 60 80 100

Angle - 6p (urad)

Fig. 7: X-ray monochromator diffracted intensities around the Si(111) reflection. Here, 7 represents the intensity of a
single reflection, and 32 the intensity from 2 bounces, as for a double-crystal monochromator. The intensity and angular
offset of the third harmonic is also shown.

Note that the values reported for theta_fwhm and energy_fwhm will be about 6% larger than the reported values for
theta_width and energy_width. The width values closely follow the region of the curve where the reflectivity ignoring
absorption would be 1 - the flat top of the curve. Since a double-crystal monochromator will suppress the tails of the
reflectivity, this smaller value is the one typically reported as “the Darwin width”, though some sources will report this
smaller value as “FWHM”.

An example of the intensity of a single reflection and the “rocking curve” of two crystals is given in

import numpy as np
from xraydb import darwin_width
(continues on next page)

18 Chapter 1. Table of Contents

_images/darwin_widths.png

xraydb, Release 4.5.6

(continued from previous page)

import matplotlib.pyplot as plt
dw_silll = darwin_width(10000, 'Si', (1, 1, 1))

dtheta dw_silll.dtheta*1e6

fig, ax = plt.subplots(constrained_layout=True)

ax.plot(dtheta, dw_silll.intensity, label='I, 1 crystal', linewidth=2)
ax.plot(dtheta, dw_silll.rocking curve, label='Rocking Curve', linewidth=2)

ax.set_title('X-ray Rocking Curve at 10keV, Si(111)")
ax.set_xlabel('Angle - $\\theta_B$ ($ \\mu \mathrm $HH
ax.set_ylabel ('Reflectivity"')

ax.legend()

plt.show()

which generates a plot of

X-ray Rocking Curve at 10keV, Si(111)

1.0 4
= |, 1 crystal

Rocking Curve

0.8

o
=]
I

Reflectivity

o
'S
i

0.2 1

0.0 A

T
—50 —25 0 25 50 75 100
Angle - 8g (urad)

Fig. 8: X-ray monochromator rocking curve around the Si(111) reflection. Here, the blue curve shows the intensity of
a single reflection, as above, while the orange curve shows the intensity from rocking one crystal through the reflection
of the other.

1.3. Example Calculations of X-ray properties of materials 19

_images/darwin_rocking.png

xraydb, Release 4.5.6

1.4 Using XrayDB from Python

The python directory contains the source code for a Python module for XrayDB. This module gives a user-friendly
wrapping of the XrayDB, and automates the the conversion of data from sqlite database into Python and numpy arrays.
The module requires the numpy, scipy and sqlalchemy modules, all of which are readily available and can be installed
with:

[pip install xraydb]

The current version of the Python module is 4.5.6, corresponding to version 6 of xraydb.sqlite.

1.4.1 The Python xraydb module

To use the XrayDB from Python, you can import the xraydb module and start using it:

>>> import xraydb

>>> xraydb.atomic_number('Ag')

47

#

X-ray elastic (Thomson) scattering factors:

>>> import numpy as np

>>> q =np.linspace(0, 5, 11)

>>> xraydb.f0('Fe', q)

array([25.994603 , 11.50848469, 6.55945765, 4.71039413, 3.21048827,
2.20939146, 1.65112769, 1.36705887, 1.21133507, 1.10155689,
1.0035555 1)

#

X-ray emission lines:

>>> for name, line in xraydb.xray_lines('Zn', 'K').items():

print(name, ' = ', line)
Ka3 = XrayLine(energy=8462.8, intensity=0.000316256, initial_level='K', final_level='L1
=99
Ka2 = XrayLine(energy=8614.1, intensity=0.294353, initial_level='K', final_level='L2")
Kal = XrayLine(energy=8637.2, intensity=0.576058, initial_level='K', final_level='L3")
Kb3 = XrayLine(energy=9567.6, intensity=0.0438347, initial_level='K', final_level='M2")
Kbl = XrayLine(energy=9570.4, intensity=0.0846229, initial_level='K', final_level='M3')
Kb5 = XrayLine(energy=9648.8, intensity=0.000815698, initial_level='K', final_level=
—~'M4,5")
#

X-ray absorption edges:
>>> xraydb.xray_edge('As', 'K'")
XrayEdge (energy=11867.0, fyield=0.548989, jump_ratio=7.314)
#
X-ray attenuation factors:
>>> as_kedge = xraydb.xray_edge('As', 'K').energy
>>> energies = np.linspace(-50, 50, 5) + as_kedge
>>> muvals = xraydb.mu_elam('As', energies)
>>> for en, mu in zip(energies, muvals):
print (" " format(en, mu))

11817 26.07

(continues on next page)

20 Chapter 1. Table of Contents

xraydb, Release 4.5.6

(continued from previous page)

11842 25 .97
11867 25.77
11892 178.32
11917 177.38

Table of XrayDB function for Atomic and X-ray data for the elements

Most of these function return some element-specific property from the element symbol or atomic number.
Some of the data extends to Z=98 (Cf), but some data may not be available for Z > 92 (U). Except where
noted, the data comes from [Elam, Ravel, and Sieber (2002)].

xraydb functions

description

atomic_number ()
atomic_symbol ()
atomic_mass()
atomic_name ()
atomic_density()

00

f0_ions()

xray_edge()
xray_edges()
xray_lines()
fluor_yield()

ck _probability()
mu_elam()
coherent_cross_section_elam()
incoherent_cross_section_elam()
chantler_energies()
f1_chantler()
f2_chantler()
mu_chantler()
guess_edge ()
chemparse ()
validate_formula()
get_materials()
get_material()
find_material()
add_material()
material_mu()
material_mu_components()
xray_delta_beta()
darwin_width()
mirror_reflectivity()
ionization_potential()
ionchamber_fluxes()

atomic number from symbol

atomic symbol from number

atomic mass

atomic name (English)

density of pure element

elastic scattering factor ([Waasmaier and Kirfel (1995)])

list of valid “ions” for £0() ([Waasmaier and Kirfel (1995)])
xray edge data for a particular element and edge

dictionary of all X-ray edges data for an element

dictionary of all X-ray emission line data for an element
fluorescent yield for an X-ray emission line

Coster-Kronig transition probability between two atomic levels
absorption cross-section, photo-electric or total for an element
coherent scattering cross-section for an element

incoherent scattering cross-section for an element

energies of tabulation for Chantler data ([Chantler (2000)])
f/(F) anomalous scattering factor ([Chantler (2000)])

17 (E) anomalous scattering factor ([Chantler (2000)])
absorption cross-section ([Chantler (2000)])

guess element and edge from energy of absorption edge

parse a chemical formula to atomic abundances

test whether a chemical formula can be parsed.

get a dictionary of known materials {name:(formula, density)}
get a (formula, density) tuple for a material in the materials database
get a material instance for a material in the materials database
add a material to local materials database

absorption cross-section for a material at X-ray energies
dictionary of elemental components of mu for material
anomalous index of refraction for material and energy

Darwin widths for monochromator crystals

X-ray reflectivities for mirror materials (thick slab limit)
effective ionization potential for a gas, as for ion chambers
calculate fluxes from ion chamber voltages, gases, and sensitivities

get_xraydb(
return instance of the XrayDB

Returns
XrayDB

1.4. Using XrayDB from Python

21

xraydb, Release 4.5.6

Example

>>> import xraydb
>>> xdb = xraydb.get_xraydb()

1.4.2 Atomic Properties

atomic_number (element)

z for element name

Parameters
element (str) — atomic symbol

Returns
atomic number

atomic_symbol(z)

atomic symbol for atomic number

Parameters
z (int) — atomic number

Returns
atomic symbol

atomic_mass (element)

molar mass for an element

Parameters
element (int, str)-— atomic number, atomic symbol for element

Returns
atomic mass, in AMU

atomic_name(z)

atomic name for atomic number

Parameters
z (int) — atomic number

Returns
atomic name (English)

atomic_density(element)
density (gr/cm”3) for common for of an element

Parameters
element (int, str)- atomic number, atomic symbol for element

Returns
density in gm/cm”3

22 Chapter 1. Table of Contents

xraydb, Release 4.5.6

1.4.3 Elastic Scattering Factors

10 (ion, q)

elastic X-ray scattering factor, f0(q), for an ion.
Parameters
e ion (int or str)- atomic number, atomic symbol or ionic symbol of scatterer
* q (float, ndarray) - Q value(s) for scattering

Returns
scattering factor for each Q value

Notes
1. from D. Waasmaier and A. Kirfel, Acta Cryst. A51 p416 (1995) and International Tables for Crystallogra-
phy, Vol. C.
2. ion can be of the form: 26, Fe, Fe2+. For a full list of ions use f0_ions()
3. elements supported are from Z =1 to 98 (‘H’ to ‘Cf’)

4. q = sin(theta) / lambda, where theta=incident angle, lambda=X-ray wavelength

£0_ions (element=None)

list ion names supported in the fO() calculation from Waasmaier and Kirfel.

Parameters
element (None, int, str)— scatterer

Returns
list of strings for matching ion names

Notes

if element is None, all 211 ions are returned.

1.4.4 X-ray Edges

xray_edge (element, edge, energy_only=False)
get x-ray absorption edge data for an element: (energy(in eV), fluorescence yield, jump ratio)

Parameters
* element (int, str)- atomic number, atomic symbol for element
* edge (str) — iupac symbol of X-ray edge
* energy_only (bool) — whether to return only the energy [False]

Returns
XrayEdge namedtuple containing (energy, fluorescence_yield, edge_jump) or float of energy

1.4. Using XrayDB from Python 23

xraydb, Release 4.5.6

xray_edges (element)

get dictionary of x-ray absorption edges:
energy(in eV), fluorescence yield, and jump ratio for an element.

Parameters
element (int, str)- atomic number, atomic symbol for element

Returns
dictionary of XrayEdge named tuples.

Notes

1. The dictionary will have keys of edge (iupac symbol) and values containing an XrayEdge namedtuple
containing (energy, fluorescence_yield, edge_jump)

core_width(element, edge=None)

returns core hole width for an element and edge
Parameters
e element (int or str)-element
» edge (None or str)-edge to consider

Returns
adict of {edge: core_hole_width} if the edge is not specified or a float with the core hole
width for a specified edge.

Notes

1. if edge is None, a dict of core hole widths for all edges is returned
2. Data from Krause and Oliver (1979) and Keski-Rahkonen and Krause (1974)

3. Values are in eV

guess_edge (energy, edges=('K', 'L3', 'L2', 'L1', 'M5'))
guess an element and edge based on energy (in eV)
Parameters
* energy (float) — approximate edge energy (in eV)
* edges (None or list of strings) - edges to consider

Returns
a tuple of (atomic symbol, edge) for best guess

24 Chapter 1. Table of Contents

xraydb, Release 4.5.6

Notes

by default, the list of edges is (‘K’, ‘L3’, ‘L2, ‘L1’, ‘M5’)

1.4.5 X-ray Emission Lines

xray_lines (element, initial_level=None, excitation_energy=None)

get dictionary of X-ray emission lines of an element
Parameters
* element (int, str)- atomic number, atomic symbol for element
e initial_level (None or str) - iupac symbol of initial level
* excitation_energy (None or float)— exciation energy

Returns
dict of X-ray lines with keys of siegbahn notation and values of XrayLine tuples of (energy,
intensity, initial level, final level)

Notes
1. excitation energy will supercede initial_level, as it means ‘all intial levels with below this energy

Exaample:

>>> for name, line in xraydb.xray_lines('Mn', 'K').items():
print(name, line)

Ka3 XrayLine(energy=5769.9, intensity=0.000265963, initial_level='K', final_
~level="L1")

Ka2 XrayLine(energy=5889.1, intensity=0.293941, initial_level='K', final_level=
—'L2")

Kal XrayLine(energy=5900.3, intensity=0.58134, initial_level='K', final_level=
t—>'L3‘)

Kb3 XrayLine(energy=6491.8, intensity=0.042234, initial_level='K', final_level=
'M2")

Kbl XrayLine(energy=6491.8, intensity=0.0815329, initial_level='K', final_level=
—'M3")

Kb5 XrayLine(energy=6537.0, intensity=0.000685981, initial_level='K', final_
—~level="M4,5")

fluor_yield(element, edge, line, energy)
fluorescence yield for an X-ray emission line or family of lines.

Parameters
* element (int, str)- atomic number, atomic symbol for element
* edge (str) — iupac symbol of X-ray edge
* line (str) — siegbahn notation for emission line

* energy (float) — incident X-ray energy

1.4. Using XrayDB from Python 25

xraydb, Release 4.5.6

Returns
fluorescence yield, weighted average fluorescence energy, net_probability

Examples

>>> xraydb.fluor_yield('Fe', 'K', 'Ka', 8000)
0.350985, 6400.752419799043, 0.874576096

>>> xraydb.fluor_yield('Fe', 'K', 'Ka',6 6800)
0.0, 6400.752419799043, 0.874576096

>>> xraydb. fluor_yield('Ag', 'L3', 'La', 6000)
0.052, 2982.129655446868, 0.861899000000000

e See also

xray_lines which gives the full set of emission lines (‘Kal’, ‘Kb3’, etc) and probabilities for each of these.

ck_probability(element, initial, final, total=True)
transition probability for an element, initial, and final levels.

Parameters
* element (int, str)- atomic number, atomic symbol for element
» initial (str) - iupac symbol for initial level
e final (str) - iupac symbol for final level
* total (bool) — whether to include transitions via possible intermediate levels [True]

Returns
transition probability, or O if transition is not allowed.

1.4.6 Absorption and Scattering Cross-sections

mu_elam(element, energy, kind='"total")
X-ray mass attenuation coefficient, mu/rho, for an element and energy or array of energies. Data is from the Elam

tables.
Parameters
e element (int, str)- atomic number, atomic symbol for element
* energy (float or ndarray) - energy or array of energies
» kind (str) — type of cross-section to use, one of (‘total’, ‘photo’, ‘coh’, ‘incoh’) [‘total’]
Returns

float value or ndarray

26 Chapter 1. Table of Contents

xraydb, Release 4.5.6

Notes

1. Values returned are in units of cm”2/gr

2. The default is to return total attenuation coeflicient.

coherent_cross_section_elam(element, energy)

coherent scaattering cross-section for an element and energy or array of energies. Data is from the Elam tables.
Parameters
* element (int, str)- atomic number, atomic symbol for element
* energy (float or ndarray)— energy or array of energies

Returns
float value or ndarray

Notes
1. Values returned are in units of cm”2/gr

incoherent_cross_section_elam(element, energy)

incoherent scaattering cross-section for an element and energy or array of energies. Data is from the Elam tables.
Parameters
* element (int, str)- atomic number, atomic symbol for element
* energy (float or ndarray)— energy or array of energies

Returns
float value or ndarray

Notes
1. Values returned are in units of cm”2/gr

chantler_energies (element, emin=0, emax=1000000000.0)

energies at which Chantler data is tabulated for a particular element.
Parameters
* element (int, str)- atomic number, atomic symbol for element
* emin (float) — lower bound of energies (default=0)
* emax (float) — upper bound of energies (default=1.e9)

Returns
ndarray of energies

1.4. Using XrayDB from Python 27

xraydb, Release 4.5.6

Notes

energies are in eV

f1_chantler (element, energy, **kws)

real part of anomalous x-ray scattering factor for an element and energy or array of energies. Data is from the
Chantler tables.

Parameters
e element (int, str)- atomic number, atomic symbol for element

* energy (float or ndarray) - energy or array of energies

Returns
float value or ndarray

Notes
1. Values returned are in units of electrons

f2_chantler (element, energy)

imaginary part of anomalous x-ray scattering factor for an element and energy or array of energies. Data is from
the Chantler tables.

Parameters
e element (int, str)- atomic number, atomic symbol for element

* energy (float or ndarray)— energy or array of energies

Returns
float value or ndarray

Notes
1. Values returned are in units of electrons

mu_chantler (element, energy, incoh=False, photo=False)

X-ray mass attenuation coeficient, mu/rho, for an element and energy or array of energies. Data is from the
Chantler tables.

Parameters
* element (int, str)- atomic number, atomic symbol for element
* energy (float or ndarray)— energy or array of energies
* incoh (bool) — whether to return only the incoherent contribution [False]

» photo (bool) — whether to return only the photo-electric contribution [False]

Returns
float value or ndarray

28 Chapter 1. Table of Contents

xraydb, Release 4.5.6

Notes

1. Values returned are in units of cm”2/gr

2. The default is to return total attenuation coeflicient.

1.4.7 Chemical and Materials database

chemparse (formula)
parse a chemical formula to a dictionary of elemental abundances

Parameters
formula (str) — chemical formula

Returns
dict of element symbol and abundance.

Examples

(>>> from xraydb import chemparse
>>> chemparse('Mn(S04)2(H20)7)")
{'H': 14.0, 'S': 2.0, 'Mn': 1, '0O': 15.0}

(>>> chemparse('Znl.e-5Fe304")
{'Zn': 1e-05, 'Fe': 3.0, '0': 4.0}

(>>> chemparse('C0")
{'c': 1, '0': 1}
>>> chemparse('Co")
{'Co': 1}

p
>>> chemparse('co')

ValueError: unrecognized element or number:
co

validate_formula (formula)

return whether a chemical formula is valid and can be parsed to a dictionary with chemparse()

Parameters
formula (str) — chemical formula

Returns
bool (True or False) for whether chemparse() will succeed

1.4. Using XrayDB from Python

29

xraydb, Release 4.5.6

Examples

(>>> from xraydb import validate_formula
>>> validate_formula('Mn(S04)2(H20)7)")
True

.

r>>> validate_formula('Mn(S04)2(H207")
False

L

>>> validate_formula('Z")
False

get_materials (force_read=Fulse, categories=None)

get dictionary of all available materials
Parameters
o force_read (bool) — whether to force a re-reading of the materials database [False]

» categories (1ist of strings or None) - restrict results to those that match category
names

Returns
dict with keys of material name and values of Materials instances

Examples

>>> for name, m in xraydb.get_materials().items():
print (name, m)

water H20 1.0

lead Pb 11.34

aluminum Al 2.7

kapton C22H10N205 1.42
polyimide C22H10N205 1.42
nitrogen N 0.00125

argon Ar 0.001784

.

find_material (name)

look up material name, return material instance

Parameters
name (str) — name of material or chemical formula

Returns
material instance

30 Chapter 1. Table of Contents

xraydb, Release 4.5.6

Examples

>>> xraydb.find_material ('kapton')
Material (formula="'C22H10N205"', density=1.42, name='kapton', categories=['polymer'])

e See also

get_material()

get_material (name)
look up material name, return formula and density

Parameters
name (str) — name of material or chemical formula

Returns
chemical formula, density of material

Examples

>>> xraydb.get_material('kapton')
('"C22H10N205', 1.43)

e See also

find_material()

add_material (name, formula, density, categories=None)
add a material to the users local material database

Parameters
e name (str)— name of material
e formula (str) — chemical formula
* density (float) — density

» categories (1ist of strings or None) - list of category names

Returns
None
Notes

the data will be saved to the file ‘xraydb/materials.dat’ in the users configuration folder, and will be useful in
subsequent sessions.

1.4. Using XrayDB from Python 31

xraydb, Release 4.5.6

Examples

[>>> xraydb.add_material('becopper’, 'Cu0.98e0.02', 8.3, categories=['metal'])

1.4.8 X-ray properties of materials

For some further examples, see Example Calculations of X-ray properties of materials.

material_mu(name, energy, density=None, kind='"total")
X-ray attenuation length (in 1/cm) for a material by name or formula

Parameters
e name (str) — chemical formul or name of material from materials list.
* energy (float or ndarray)—energy or array of energies in eV
* density (None or float)- material density (gr/cm”3).

* kind (str) — ‘photo’ or ‘total’ for whether to return the photo-absorption or total cross-
section [‘total’]

Returns
absorption length in 1/cm

Notes

1. material names are not case sensitive, chemical compounds are case sensitive.
2. mu_elam() is used for mu calculation.

3. if density is None and material is known, that density will be used.

Examples

>>> material_mu('H20', 10000.0)
5.32986401658495

material_mu_components (name, energy, density=None, kind='"total")

material_mu_components: absorption coefficient (in 1/cm) for a compound
Parameters
e name (str) — chemical formul or name of material from materials list.
* energy (float or ndarray) - energy or array of energies in eV
* density (None or float)— material density (gr/cm”3).

e kind (str) — ‘photo’ or ‘total’for whether to return photo-absorption or total cross-section
[‘total’]

Returns

dict for constructing mu per element,
with elements ‘mass’ (total mass), ‘density’, and

32 Chapter 1. Table of Contents

xraydb, Release 4.5.6

’elements’ (list of atomic symbols for elements in material).
For each element, there will be an item (atomic symbol as key) with tuple of (stoichiometric
fraction, atomic mass, mu)

Examples

>>> xraydb.material_mu('quartz', 10000)

50.36774553547068

>>> xraydb.material_mu_components('quartz', 10000)

{'mass': 60.0843, 'density': 2.65, 'elements': ['Si', '0'],

'Si': (1, 28.0855, 33.87943243018506), 'O': (2.0, 15.9994, 5.952824815297084)}

xray_delta_beta(material, density, energy)

anomalous components of the index of refraction for a material, using the tabulated scattering components from

Chantler.
Parameters
* material - chemical formula (‘Fe203’, ‘CaMg(C03)2’, ‘Lal.9Sr0.1Cu04’)
* density — material density in g/cm”3
* energy — x-ray energy in eV
Returns

(delta, beta, atlen)

where
delta : real part of index of refraction beta : imag part of index of refraction atlen : attenuation length in
cm

These are the anomalous scattering components of the index of refraction:

n =1 - delta - i*beta = 1 - lambda**2 * r0/(2*pi) Sum_j (n_j * fj)

Adapted from code by Yong Choi

darwin_width(energy, crystal="Si', hki=(1, 1, 1), a=None, polarization='s', ignore_f2=False, ignore_fl=Fulse,
m=1)

darwin width for a crystal reflection and energy
Args: energy (float): X-ray energy in eV crystal (string): name of crystal (one of ‘Si’, ‘Ge’, or ‘C’) [‘Si’] hkl

(tuple): h, k, 1 for reflection [(1, 1, 1)] a (float or None): lattice constant [None - use built-in value] polarization

€299 ¢

(‘s’,’p’, ‘u’): mono orientation relative to X-ray polarization [‘s’] ignore_f1 (bool): ignore contribution from f1 -
dispersion (False) ignore_f2 (bool): ignore contribution from {2 - absorption (False) m (int): order of reflection

[1]

Returns:

A named tuple ‘DarwinWidth’ with the following fields

theta: float, nominal Bragg angle, in rad,

theta_offset: float, angular offset from Bragg angle, in rad,
theta_width: float, estimated angular Darwin width, in rad,
theta_fwhm: float, estimated FWHM of angular intensity, in rad,

rocking_theta_fwhm: float, estimated FWHM of a rocking curve, in rad,

1.4. Using XrayDB from Python 33

xraydb, Release 4.5.6

energy_width: float, estimated angular Darwin width, in rad,
energy_fwhm: float, estimated FWHM of energy intensity, in eV,
rocking_energy_fwhm: float, estimated FWHM of a rocking curve, in eV,
zeta: nd-array of Zeta parameter (delta_Lambda / Lambda),

dtheta: nd-array of angles away from Bragg angle, theta in rad,

denergy: nd-array of energies away from Bragg energy, in eV,

intensity: nd-array of reflected intensity,

rocking_curve: nd-array of rocking curve of 2 crystals,

Notes:

1. This follows the calculation from section 6.4 of Elements of Modern X-ray Physics, 2nd Edition J Als-Nielsen,
and D. McMorrow.

2. Only diamond structures (Si, Ge, diamond) are currently supported. Default values of lattice constant a are
in Angstroms: 5.4309 for Si, 5.6578, for ‘Ge’, and 3.567 for ‘C’.

3. The theta_width and energy_width values will closely match the width of the intensity profile that would = 1
when ignoring the effect of absorption. These are the values commonly reported as ‘Darwin Width’. The value
reported for theta_fwhm’ and ‘energy_fwhm are larger than this by sqrt(9/8) ~= 1.06.

LS R}

4. Polarization can be ‘s’, ‘p’, ‘u’, or None. ‘s’ means vertically deflecting crystal and a horizontally-polarized
source, as for most synchrotron beamlines. ‘p’ is for a horizontally-deflecting crystal. ‘v’ or None is for unpo-
larized light, as for most fluorescence/emission.

5. The rocking_curve will be the convolution of the intensity with itself, to simulate an angular scan of one
crystal with respect to the other, as is often done with double-crystal monochromators. rocking_theta_fwhm and
rocking_energy_fwhm will be the FWHM of this curve in angle and energy, and will typiccally be ~1.5x the
Darwin widths in theta_width and energy_width, respectively.

Examples: >>> dw = darwin_width(10000, crystal="Si’, hkl=(1, 1, 1)) >>> print(dw.theta_width,
dw.energy_width) 2.695922108316184e-05 1.336668903324966

mirror_reflectivity (formula, theta, energy, density=None, roughness=0.0, polarization="s")

mirror reflectivity for a thick, singl-layer mirror.
Parameters

e formula (string) — material name or formula (‘Si’, ‘Rh’, ‘silicon’)
* theta (float or nd-array)— mirror angle in radians
* energy (float or nd-array)- X-ray energy in eV
* density (float or None)- material density in g/cm”3
» roughness (float) — mirror roughness in Angstroms
* polarization ('s' or 'p') — mirror orientation relative to X-ray polarization

Returns
mirror reflectivity values

34

Chapter 1. Table of Contents

xraydb, Release 4.5.6

Notes

1. only one of theta or energy can be an nd-array
2. density can be None for known materials

3. polarization of ‘s’ puts the X-ray polarization along the mirror surface, ‘p’ puts it normal to the mirror sur-
face. For horizontally polarized X-ray beams from storage rings, ‘s’ will usually mean ‘vertically deflecting’
and ‘p’ will usually mean ‘horizontally deflecting’.

ionization_potential (gas)

return effective ionization potential for a gas or diode semiconductor, as appropriate for ionization chambers in
the linear regime (not in the ‘proportional counter’ regime) or for PIN photodiodes (not in ‘avalanche’ mode).

Parameters
gas (string) — name of gas or ‘Si’ or ‘Ge’

Returns
ionization potential in eV

Notes

Data from G. F. Knoll, Radiation Detection and Measurement, Table 5-1, and from ICRU Report 31, 1979.
Supported gas names and effective potentials:

gas names potential (eV)
hydrogen, H 36.5
helium, He 413
nitrogen, N, N2 34.8
oxygen, O, O2 30.8
neon, Ne 354
argon, Ar 26.4
krypton, Kr 244
xenon, Xe 22.1
air 33.8
methane, CH4 27.3
carbondioxide, CO2 33.0
silicon, Si 3.68
germanium, Ge 2.97

If the gas is not recognized the default value of 32.0 eV will be returned.

ionchamber_fluxes (gas='nitrogen’, volts=1.0, length=100.0, energy=10000.0, sensitivity=1e-00,
sensitivity_units='A/V', with_compton=True, both_carriers=True)

return ion chamber and PIN diode fluxes for a gas, mixture of gases, or semiconductor material, ion chamber
length (or diode thickness), X-ray energy, recorded voltage and current amplifier sensitivity. See note for details.

Parameters
* gas (string or dict)—name or formula of fill gas (see note 1) [‘nitrogen’]
» volts (float) — measured voltage output of current amplifier [1.0]
* length (float) — active length of ion chamber in cm [100]

* energy (float) — X-ray energy in eV [10000]

1.4. Using XrayDB from Python 35

xraydb, Release 4.5.6

» sensitivity (float) — current amplifier sensitivity [1.e-6]

e sensitivity_units (string) — units of current amplifier sensitivity (see note 2 for op-
tions) [‘A/V’]

* with_compton (bool) — switch to control the contribution of Compton scattering (see note
3) [True]

e both_carriers (bool) — switch to control whether to count both electron and ion current
(see note 4) [True]

Returns
named tuple IonchamberFluxes with fields
incident flux of beam incident on ion chamber in Hz
transmitted flux of beam output of ion chamber in Hz
photo flux absorbed by photo-electric effect in Hz

incoherent flux attenuated by incoherent scattering in Hz

Examples

(>>> from xraydb import ionchamber_fluxes
>>> fl = ionchamber_fluxes(gas='nitrogen', volts=1.25,
length=20.0, energy=10e3, sensitivity=1.e-6)

(>>> print (f"Fluxes: In={fl.incident:g}, Out={fl.transmitted:g}, Transmitted={100%fl.
—transmitted/fl.incident:.2f}%")
Fluxes: In=3.20045e+11, Out=2.90464e+11, Transmitted=90.76%

>>> fl = ionchamber_fluxes(gas={'nitrogen':0.5, 'helium': 0.5},
volts=1.25, length=20.0, energy=10000.0,
sensitivity=1.e-6)

>>> print(f"Fluxes: In={fl.incident:g}, Out={fl.transmitted:g}, Transmitted={100*fl.
—transmitted/fl.incident:.2f/%")
Fluxes: In=6.83845e+11, Out=6.51188e+11, Transmitted=95.22%

Notes

1. The gas value can either be a string for the name of chemical formula for the gas or diode material, or
dictionary with keys that are gas names or formulas and values that are the relative fraction for mixes gases.
For diode materials, mixtures are not supported.

The gas formula is used both the contributions for mu and to get the weighted effective ionization potential
for the material.

The effective ionization potentials are known for a handful of gases and diodes (see ionization_potential
function), and range between 20 and 45 eV for gases, and around 3 eV for semiconductors. For unknown
gases the value of 32.0 eV will be used.

2. The sensitivity and sensitivity_units arguments have some overlap to specify the sensitivity of the current

[PUE I LRI

amplifier. Generally, the units are in A/V, but you can add a common SI prefix of ‘p’, ‘pico’, ‘n’, ‘nano’,

36

Chapter 1. Table of Contents

xraydb, Release 4.5.6

(unicode ‘u03bc’), ‘w’, ‘micro’, ‘m’, ‘milli’ so that, ionchamber_fluxes(.. ., sensitivity=1.e-6) and ioncham-
ber_fluxes(..., sensitivity=I, sensitivity_units="uA/V’) will both give a sensitivity of 1 microAmp / Volt.

3. The effect of Compton scattering on the ion chamber current can be approximated using the mean energy
of the Compton-scattered electron. See the documentation for more details. Set with_compton=False to
turn off this correction.

4. The effective ionization potential generates an electron and ions pair, and normally both carriers will con-
tribute to the current. Thus, the number of carries below, N_carriers is 2. To consider the current from 1
carrier, for example if using a Frisch grid, use both_carries=False, which will set N_carriers to 1.

1.5 Overview of Atomic and X-ray Data

The data provided in XrayDB includes Atomic data and characteristic energies and cross sections for the interaction of
X-rays with elements. A few definitions and conventions necessary for using this data are discussed here.

1.5.1 Elements

Most of the data resources are accessed by an elements Afomic Symbol. For the Python module, most methods will
take element as the first argument, and this can either be the integer atomic number or the string for the atomic symbol.

1.5.2 Physical Units

Elemental densities are given in gr/cm”3, and molar masses are given in AMU. Unless otherwise stated, all energies
are in units of eV.

1.5.3 X-ray Edges

Several resources (database tables, python methods) take either an edge or a 1evel argument to signify a core electronic
level. These are strings and must be one of the levels listed in the Table of X-ray edge names.

Table of X-ray Edges and Core electronic levels. The Names are the IUPAC symbols for the core electronic
levels.

Name electronic level Name electronic level

K 1s N5 4d5/2
L3 2p3/2 N4 4d3/2
L2 2p1/2 N3 4p3 /2
L1 2s N2 4p1 /2
M5 3d5/2 N1 4s

M4 3d3/2 03 5p3/2
M3 3p3/2 02 oP1/2
Ml 3s P3 6p3/2
N7 4f7/2 P2 6p1/2

1.5. Overview of Atomic and X-ray Data 37

xraydb, Release 4.5.6

1.5.4 X-ray Lines

Many resources (database tables or methods) take emission line arguments. These are all strings and follow the latinized
version of the Siegbahn notation as indicated in the Table of X-ray emission line names.

Table of X-ray emission line names and the corresponding Siegbahn and IUPAC notations

Name IUPAC Siegbahn Name IUPAC Siegbahn
Kal K-L3 Kay Lb4 L1-M2 Ljy
Ka2 K-L2 Koy Lb5 L3-04,5 Lps
Ka3 K-L1 Kas Lb6 L3-N1 LB
Kbl KM3 Kp Lgl L2-N4 Ly
Kb2 K-N2,3 K (s Lg2 L1-N2 Lo
Kb3 K-M2 KB Lg3 L1-N3 Lvs
Kb4 K-N45 Kps Lg6 L2-04 Le
Kb5 K-M4,5 Kf; LI L3-Ml1 Ll
Lal L3-M5 Loy Ln L2-M1 Lv
La2 L3-M4 Loy Ma M5-N6,7 Ma
Lbl L2-M4 Lp; Mb M4-N6 MB
Lb2,15 L3-N4,5 LB, LB15 Mg M3-N5 M~y
Lb3 LI-M3 LBs Mz M4,5-N6,7 M(

1.5.5 Cross Sections

The photo-absorption and scattering cross sections from [Elam, Ravel, and Sieber (2002)] and [Chantler (2000)] are

in cm”2/gr.

The data from [Elam, Ravel, and Sieber (2002)] is held as logarithms of energy, cross section, and logarithm of the 2nd
derivative of cross section that allows for cubic spline interpolation in log-log space.

1.6 Using the XrayDB xraydb.sqlite

All the data for the X-ray database is held in the SQLite3 file xraydb.sqlite. To use with SQLite, this file is all you
need. While many programs and languages can access SQLite files, basic usage with the sqlite3 program (available
from Windows, Mac OS X, and Linux) can be as simple as:

system~> sqlite3 xraydb.sqglite

sgqlite> .headers on

sqlite> select * from elements where atomic_number=47;

atomic_number |element |name |molar_mass|density

47 |Ag|silver|107.868|10.48

That is, you can retrieve the data using standard SQL queries built-in to SQLite. Of course, the expectation is that you’d
want to use this database within a programming environment. Currently, wrappers exist only for Python.

38

Chapter 1. Table of Contents

xraydb, Release 4.5.6

1.6.1 Overall Database Schema

The schema for the SQLite3 database describes where data is held in the database, and how to access it. The schema
for the current version (4) looks like this:

Table Version (id integer primary key,
tag text,
date text,
notes text);
Table elements (atomic_number integer primary Kkey,
element text,
name text,
molar_mass real,
density real);
Table xray_levels (id integer primary key,
element text,
iupac_symbol text,
absorption_edge real,
fluorescence_yield real,
jump_ratio real);
Table xray_transitions (id integer primary key,
element text,
iupac_symbol text,
siegbahn_symbol text,
initial_level text,
final_level text,
emission_energy real,
intensity real);
Table Coster_Kronig (id integer primary key,
element text,
initial_level text,
final_level text,
transition_probability real,
total_transition_probability real);
Table photoabsorption (id integer primary key,
element text,
log_energy text,
log_photoabsorption text,
log_photoabsorption_spline text);
Table scattering (id integer primary key,
element text,
log_energy text,
log_coherent_scatter text,
log_coherent_scatter_spline text,
log_incoherent_scatter text,
log_incoherent_scatter_spline text);
Table Waasmaier (id integer primary key,
atomic_number integer,
element text,
ion text,
offset real,
scale text,
exponents text);
(continues on next page)

1.6. Using the XrayDB xraydb.sqlite 39

xraydb, Release 4.5.6

(continued from previous page)

Table KeskiRahkonen Krause (id integer primary key,
atomic_number integer,
element text,
edge text,
width float);

Table Krause_Oliver (id integer primary key,
atomic_number integer,
element text,
edge text,
width float);

Table corelevel_widths (id integer primary key,
atomic_number integer,
element text,
edge text,
width float);

Table Chantler (id integer primary key,

element text,
sigma_mu real,
mue_f2 real,
density real,
corr_henke float,
corr_cl35 float,
corr_nucl float,
energy text,

fl text,

2 text,
mu_photo text,
mu_incoh text,
mu_total text);

More details for each table are given below.

© Note

in the tables below the type of json array means that arrays of numerical data are stored in the database as text of
JSON-encoded arrays.

1.6.2 Version Table

The Version table holds data about the revisions to the database file itself. Each row represents a single revision.

DB Table of Database Versions

Column Type Description

id integer counter (primary tag)

tag text version name

date text date string

notes text notes on changes for version

40 Chapter 1. Table of Contents

xraydb, Release 4.5.6

1.6.3 Elements Table

The elements table holds basic data about each element.

DB Table of Basic Properties of the Elements

Each row represents an element.

Column Type Description

atomic_number integer Atomic Number, Z

element text Atomic symbol

name text English name of element
molar_mass float Atomic mass in AMU

density float Density of pure element (gr/cm”3)

1.6.4 Xray_Levels Table

The xray_levels table holds data for electronic levels of

DB Table of X-ray and core electronic levels. flu
refilling by X-ray fluorescence. The jump ratio is

atoms. Each row represents a core electronic level.

orescence yield gives the probability of an empty level
the ratio of values for photo-electric cross section (that

is, from Photoabsorption Table) 1 eV above the absorption edge to that 1 eV below the absorption edge.

See Table of X-ray Edges

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
iupac_symbol text IUPAC symbol for level (‘K’,;’L3’,...)
absorption_edge float binding energy for level (eV)
fluorescence_yield float fluorescence yield (fraction)
jump_ratio float ratio of mu_photo across edge

1.6.5 Xray_Transitions Table

The xray_transitions table holds data for transitions between electronic levels of atoms. Each row represents a transition

between two levels.

DB Table of X-ray Transitions. Both IUPAC and Siegbahn symbols are given (see Table of X-ray emission

lines), as well as the initial and final levels. The
given initial level.

intensity is the relative intensity of the transition for a

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
iupac_symbol text IUPAC symbol for transition
siegbahn_symbol text Siegbahn symbol for transition
initial_level text TUPAC symbol for initial level
final_level text TUPAC symbol for final level
emission_energy float fluorescence energy (eV)
intensity float relative intensity for transition

1.6. Using the XrayDB xraydb.sqlite

41

xraydb, Release 4.5.6

1.6.6 Photoabsorption Table

The photoabsorption table holds data for the photo-electric absorption cross sections in cm”2/gr. Each row represents

an element.

DB Table of Photoabsorption Cross Sections. JSON-encoded arrays are held for logs of energy, cross
section, and cross section spline (second derivative useful for spline interpolation).

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
log_energy json array log of Energy values (eV)
log_photoabsorption json array log of cross section (cm”2/gr)
log_photoabsorption_spline json array log of cross section spline

1.6.7 Scattering Table

The scattering table holds data for the coherent and incoherent X-ray scattering cross sections, in cm”2/gr. Each row

represents an element.

DB Table of Coherent and Incoherent Scattering Cross Sections. JSON-encoded arrays are held for logs
of energy, cross section, and cross section spline (second derivative useful for spline interpolation).

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
log_energy json array log of Energy values (eV)
log_coherent_scatter json array log of cross section (cm”2/gr)
log_coherent_scatter_spline json array log of cross section spline
log_incoherent_scatter json array log of cross section (cm”2/gr)
log_incoherent_scatter_spline json array log of cross section spline

1.6.8 Coster_Kronig Table

The Coster_Kronig table holds data for energy levels, partial and total transition probabilities for the Coster-Kronig
transitions (Auger processes in which the empty core level is filled from an electron in a higher level with the same
principle quantum number). The partial probability describes direct transitions, while the total probability includes

cascade effects. Each row represents a transition.

DB Table of Coster-Kronig Transitions.

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
initial_level text IUPAC symbol for initial level
final_level text TUPAC symbol for final level
transition_probability float direct transition probability
total_transition_probability float total transition probability

42

Chapter 1. Table of Contents

xraydb, Release 4.5.6

1.6.9 Waasmaier Table

The Waasmaier table holds data for calculating elastic X-ray scattering factors fo(k), from [Waasmaier and Kirfel
(1995)]. The scattering factor is unitless, and k = sin(6)/A where @ is the scattering angle and) is the X-ray wave-
length. available for many common ionic states for each element. Each row represents an ion.

DB Table of Elastic Scattering Cross Section Coeflicients

Column Type Description

id integer Index (primary key)
atomic_number integer Atomic Number, Z

element text Atomic symbol for element

ion text symbol for element and ionization
offset float offset value

scale json array coefficients for calculation
exponents json array coefficients for calculation

1.6.10 KeskiRahkonen_ Krause Table

The KeskiRahkonen_Krause table holds data for energy widths of the core electronic levels from [Keski-Rahkonen and
Krause (1974)]. Values are in eV, and each row represents an energy level for an element.

DB Table of Core Hole Widths from Keski-Rahkonen and Krause

Column Type Description

id integer Index (primary key)

atomic_number integer Atomic Number, Z

element text Atomic symbol for element

edge text TUPAC symbol for energy level (‘’K”)
width float width of level (eV)

1.6.11 Krause_Oliver Table

The Krause_Oliver table holds data for energy widths of the core electronic levels from [Krause and Oliver (1979)].
Values are in eV, and each row represents an energy level for an element.

DB Table of Core Hole Widths from Krause and Oliver

Column Type Description

id integer Index (primary key)

atomic_number integer Atomic Number, Z

element text Atomic symbol for element

edge text TUPAC symbol for energy level (‘’K’)
width float width of level (eV)

1.6. Using the XrayDB xraydb.sqlite 43

xraydb, Release 4.5.6

1.6.12 Compton Energies Table

The Compton_energies table holds data for median (90 deg scattering) and mean values of the energies of Compton
scattered X-rays, and the mean values of the Compton-scattered electrons as a function of incident X-ray energy. There
is only 1 row in this table, with all columns being json-encoded arrays of floats. These values should be finely-spaced
enough for linear interpolation

DB Table of Compton-scattered energies.

Column Type Description

incident json_array Incident X-ray energies (eV)
xray_90deg json_array Median scattered X-ray energies (eV)
Xray_mean json_array Mean scattered X-ray energies (eV)

electron_mean json_array Mean scattered electron energies (eV)

1.6.13 Chantler Table

The Chantler table holds data for resonant X-ray scattering factors f/(E) and f”(E) as well as photo-electric absorp-
tion, coherent, and incoherent scattering factors from [Chantler (2000)]. As with other tables, scattering factors are
unitless, and cross sections are in cm”2/gr. Each row represents an element.

DB Table of resonant scattering and mass attenuation coefficients from Chantler.

Column Type Description

id integer Index (primary key)

element text Atomic symbol for element
mue_f{2 float factor to convert mu(E) to ’(E)
density float atomic density (gr/cm”3)
corr_henke float Henke correction to f (E)
corr_cl35 float Cromer-Liberman correction to f"(E)
corr_nucl float nuclear correction to f (E)
energy json array energies for interpolation

f1 json array f’(E) (e)

2 json array f’(E) (e)

mu_photo json array photoabsorption mu(E) (cm”2/gr)
mu_incoh jsonarray incoherent scattering (cm”2/gr)
mu_total json array total attenuation (cm”2/gr)

1.7 References

44 Chapter 1. Table of Contents

BIBLIOGRAPHY

[Als-Nielsen and McMorrow (2011)] J. Als-Nielsen and D. McMorrow. Elements of Modern X-ray Physics, 2nd Edi-
tion. John Wiley & Sons, 2011. URL: https://dx.doi.org/10.1002/9781119998365.

[Chantler (2000)] C. T. Chantler. Detailed tabulation of atomic form factors, photoelectric absorption and scattering
cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (Z=30-
36, Z=60-89, E=0.1 keV-10 keV), addressing convergence issues of earlier work. Journal of Physical and
Chemical Reference Data, 29(4):597-1048, JUL-AUG 2000. URL: https://dx.doi.org/10.1063/1.1321055.

[Chantler (2016)] C. T. Chantler. FFAST Data on a finer energy grid: Personal Communication. 2016.

[Elam, Ravel, and Sieber (2002)] W. T. Elam, B. D. Ravel, and J. R. Sieber. A new atomic database for x-ray spec-
troscopic calculations. Radiation Physics and Chemistry, 63(2):121-128, February 2002. URL: https:
//dx.doi.org/10.1016/S0969-806X(01)00227-4.

[Hipp (2012)] D. R. Hipp. Sqlite. 2012. URL: https://www.sqlite.org.

[Keski-Rahkonen and Krause (1974)] O. Keski-Rahkonen and M. O. Krause. Total and partial atomic-level widths.
Atomic Data and Nuclear Data Tables, 14(2):139-146, 1974. URL: https://dx.doi.org/10.1016/
S0092-640X(74)80020-3.

[Knoll (2010)] G. .F. Knoll. Radiation Detection and Measurement, 4th Edition. John Wiley & Sons, 2010. URL:
https://dx.doi.org/10.1002/9780470131480.

[Krause and Oliver (1979)] M. O. Krause and J. H. Oliver. Natural widths of atomic k and 1 levels, ka x-ray lines
and several kll auger lines. Journal of Physical and Chemical Reference Data, 8:329, 1979. URL: https:
//dx.doi.org/10.1063/1.555595.

[Waasmaier and Kirfel (1995)] D. Waasmaier and A. Kirfel. New analytical scattering factor functions for free
atoms and ions. Acta Crystallographica A, 51:416-431, 1995. URL: https://dx.doi.org/10.1107/
S0108767394013292.

45

https://dx.doi.org/10.1002/9781119998365
https://dx.doi.org/10.1063/1.1321055
https://dx.doi.org/10.1016/S0969-806X(01)00227-4
https://dx.doi.org/10.1016/S0969-806X(01)00227-4
https://www.sqlite.org.
https://dx.doi.org/10.1016/S0092-640X(74)80020-3
https://dx.doi.org/10.1016/S0092-640X(74)80020-3
https://dx.doi.org/10.1002/9780470131480
https://dx.doi.org/10.1063/1.555595
https://dx.doi.org/10.1063/1.555595
https://dx.doi.org/10.1107/S0108767394013292
https://dx.doi.org/10.1107/S0108767394013292

xraydb, Release 4.5.6

46 Bibliography

PYTHON MODULE INDEX

X
xraydb, 20

47

xraydb, Release 4.5.6

48 Python Module Index

A

add_material () (in module xraydb), 31
atomic_density() (in module xraydb), 22
atomic_mass() (in module xraydb), 22
atomic_name () (in module xraydb), 22
atomic_number () (in module xraydb), 22
atomic_symbol () (in module xraydb), 22

C

chantler_energies() (in module xraydb), 27

chemparse () (in module xraydb), 29

ck_probability() (in module xraydb), 26

coherent_cross_section_elam() (in
xraydb), 27

core_width() (in module xraydb), 24

D

darwin_width(Q) (in module xraydb), 33

DB Table of Basic Properties of the
Elements, 41

DB Table of Coherent and Incoherent
Scattering Cross Sections, 42

DB Table of Compton Energies, 44

DB Table of Core Hole Widths, 43

DB Table of Coster-Kronig Transitions, 42

DB Table of Database Versions, 40

DB Table of Elastic Scattering Cross
Section Coefficients, 43

DB Table of Photoabsorption Cross Sections,
42

DB Table of resonant scattering and mass
attenuation coefficients from
Chantler, 44

DB Table of X-ray Levels, 41

DB Table of X-ray Transitions, 41

F

£0) (in module xraydb), 23

f0_ions () (in module xraydb), 23
f1_chantler () (in module xraydb), 28
f2_chantler () (in module xraydb), 28
find_material) (in module xraydb), 30

module

INDEX

fluor_yield() (in module xraydb), 25

G

get_material () (in module xraydb), 31
get_materials() (in module xraydb), 30
get_xraydb () (in module xraydb), 21
guess_edge () (in module xraydb), 24

incoherent_cross_section_elam()
xraydb), 27

ionchamber_fluxes() (in module xraydb), 35

ionization_potential () (in module xraydb), 35

M

material_mu() (in module xraydb), 32
material_mu_components() (in module xraydb), 32
mirror_reflectivity() (in module xraydb), 34
module

xraydb, 20
mu_chantler () (in module xraydb), 28
mu_elam() (in module xraydb), 26

T

Table of Effective Ionization Potentials, 11
Table of X-ray Edges, 37
Table of X-ray emission lines, 38

V

validate_formula() (in module xraydb), 29

X

X-ray Periodic Tables, 5
xray_delta_beta() (in module xraydb), 33
xray_edge() (in module xraydb), 23
xray_edges () (in module xraydb), 23
xray_lines() (in module xraydb), 25
xraydb

module, 20
xraydb Python module, 21

(in module

49

	Table of Contents
	Installation
	Development Version
	Testing
	Citing this work
	Copyright, Licensing, and Re-distribution

	X-ray Periodic Table of the Elements
	Example Calculations of X-ray properties of materials
	X-ray attenuation by elements
	 calculations for materials
	X-ray flux calculations for ionization chambers and photodiodes
	Effective Ionization Potentials of gases and semiconductors
	Compton scattering and Ion Chamber Current
	Ion Chamber Flux calculations
	ionchamber_fluxes()

	X-ray mirror reflectivities
	Darwin widths of monochromator crystals

	Using XrayDB from Python
	The Python xraydb module
	Atomic Properties
	Elastic Scattering Factors
	X-ray Edges
	X-ray Emission Lines
	Absorption and Scattering Cross-sections
	Chemical and Materials database
	X-ray properties of materials

	Overview of Atomic and X-ray Data
	Elements
	Physical Units
	X-ray Edges
	X-ray Lines
	Cross Sections

	Using the XrayDB xraydb.sqlite
	Overall Database Schema
	Version Table
	Elements Table
	Xray_Levels Table
	Xray_Transitions Table
	Photoabsorption Table
	Scattering Table
	Coster_Kronig Table
	Waasmaier Table
	KeskiRahkonen_Krause Table
	Krause_Oliver Table
	Compton Energies Table
	Chantler Table

	References

	Bibliography
	Python Module Index
	Index

